
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Algorithms for query
evaluation

Selection, Projection

Lecture 03.01.

By Marina Barsky
Winter 2017, University of Toronto

Queries about data

Two levels:

1. High-level: formulating queries about data (in SQL?)

2. Low-level: implementing algorithms for answering
(evaluating) these queries

Query evaluation

• Efficient implementation for each relational operator

• Combining these implementations into a larger program to
answer a given query

• Optimizing query plan before executing this combination

We learn how to implement:

• Selection (σ): select a subset of rows from relation

• Projection (π): delete unwanted columns from relation

• Join (⋈): combine two relations according to a given criteria

• What options are available
for each step of query
evaluation

• How do we analyze and
compare the cost of each
algorithm

• How do we combine the
best-cost algorithms into a
larger program

Questions to answer:

σname=Paul ; use index i

student
σname=Paul

student

Several options to evaluate a single
operation

σname=Paul(student)
• scan file
• use secondary index on

student.name

Estimating cost

• We use the number of disk I/Os measured in units of 1
block

• We assume that the input for each operator is on disk,
but we exclude the cost of writing an output:

• The cost of writing the output to disk depends on the
size of the result, not on the way the result was
computed

• We can often pipeline the result to other operators in
main memory

Cost parameters

• R: the name of the relation on disk

• M: number of main memory buffers available (1buffer =
1block)

• B(R): number of blocks in R

• T(R): number of tuples in R

• V(R, a): number of distinct values in column a of R

• V(R, L): number of tuples in R that differ by at least one
value in the columns listed in L

We also need:

• SC(R,a): selection cardinality of a in R (average number of
matching tuples for each value of a)

• If a is a key: SC(R, a)=1

• If a is a non-key: SC(R, a)= T(R)/ V(R,a) (uniform
distribution assumption)

• HTi: number of levels in index i (for example, height of B-
tree)

R: the name of the relation
M: number of main memory pages
B: number of blocks in R
T: number of tuples in R
V(R, a): cardinality of column a of R

Slice operator: Selection

S=condition (R)

Select operator: corresponds to
WHERE clause

R A B C D

x

x

y

y

x

y

x

y

1

5

12

23

7

7

3

10

σA=B ∧ D > 5 (R) A B C D

x

y

x

y

1

23

7

10

SELECT *

FROM R

WHERE A = B AND D > 5

Selection algorithm I:
one-pass tuple-at-a-time

• Read the blocks of R one at a time into an input buffer

• Apply select condition to each tuple

• Move selected tuples to the output buffer

Selection I: cost

• We scan all B blocks of R

• The cost for Selection I:

B(R) disk I/Os

Main algorithmic techniques for
improving performance

• Sorting

• Hashing

• Indexes

Selection algorithm II:
R is sorted on selection condition
• Do a binary search to locate the first block with tuples

satisfying selection condition

• Starting at this block, scan file backward and forward until
first encounter of a tuple that does not satisfy the condition

• Add all matching tuples to the output buffer

Selection II: R is sorted on
selection condition

R A B C D

x

x

x

y

y

x

y

x

y

x

1

5

12

23

32

7

7

3

10

9

σA=y ∧ C > 12 (R) A B C D

y

y

y

x

23

32

10

9

SELECT *

FROM R

WHERE A = y AND C > 12

Sorted on
<A,C>

Selection II: cost

• To find the first block: log2B disk I/Os

• To retrieve all the qualifying tuples: scan SC(R,a) tuples:

Q: How many blocks for SC (R,a) tuples?

• There are T/B tuples per block

• Then there are SC(R,a) /[T/B] blocks to be scanned

• SC(R, a)= T/ V(R,a) (assuming uniform distribution)

A: Scan of B/ V(R,a) blocks

• Total cost: log2B(R) + B(R)/V(R,a) disk I/Os

R: the name of the relation
M: number of main memory pages
B: number of blocks in R
T: number of tuples in R
V(R, a): cardinality of column a of R

Selection III: R has index on
selection condition (or part thereof)
• Search B-tree to find the first qualifying tuple that satisfies

the selection condition

• Scan the leaf pages to retrieve all remaining tuples that
satisfy the condition

Selection III: cost

• The cost depends on

• the number of qualifying tuples

• whether the index is clustered

Clustered Indexes

An index is clustered if the underlying
data is ordered in the same way as the

index’s data entries.

Clustered vs. Unclustered Index

30

22 25 28 29 32 34 37 38

22 25 28 29 32 34 37 38

30

22 25 28 29 32 34 37 38

22 2528 29 3234 3738

Clustered Unclustered

Index Entries

Data Records

• Recall that for a disk with block access, sequential IO is much

faster than random IO

• For exact search, no difference between clustered /

unclustered

• For range search over X values: difference between 1 random

IO + X sequential IOs, and X random IOs:

• A random IO costs ~ 10ms (sequential much-much faster)

• For 100,000 records- difference between ~10ms and

~17min!

Clustered vs. Unclustered Index

Selection III: cost

• Finding the first qualifying tuple: HTi

• Assuming that top level is in memory: 1 disk I/O

• If B-tree index is clustered – same as for the sorted file:

B(R)/V(R,a)

• If B-tree index is unclustered – number of I/Os equals to the
number of qualifying tuples – 1 random I/O per tuple:

SC(R, a)= T(R)/ V(R,a)

Of course in practice we could sort qualifying tuples by RID
– to get all tuples in the same block by 1 I/O, but it may
well happen that all qualifying tuples belong to different
blocks

Cost estimation exercise

a=(R), and B(R) = 1000, T(R) =20,000

(20 tuples per block)

• No index on attribute a

1000 disk I/O’s

• R has a clustered index on a, V(R,a) = 100.

1 + 1000/100 = 11 I/O’s

• R has a non-clustered index on a, V(R,a) = 100

1 + 20,000/100 = 201 disk I/O’s.

If V(R,a) = 20,000 (i.e. attribute a is key)

 just 2 I/Os

Full scan:
B(R)
Sorted R:
log2B(R) + B(R)/V(R,a)
Clustered index on R:
HTi+B(R)/V(R,a)
Unclustered index on R:
HTi+T(R)/V(R,a)

Selection: complex conditions

• Option 1: Sequential scan – always works

• Option 2 (Conjunctive only): Using an appropriate index on one of
the conditions

• E.g. Use SIN index to evaluate SIN = “123”. Apply the second
condition to the tuples that match

• Or do the other way around (if index on balance exists)

• Which is better ?

• Option 3 (Conjunctive only) : Use a multi-key index

• Not commonly available

Conjunctive: select * from accounts where balance > 100000 and SIN = “123”
Disjunctive: select * from accounts where balance > 100000 or SIN = “123”

Selection: complex conditions
(contd.)

• Option 4: Conjunction or disjunction of record identifiers

• Use separate indexes to find all RIDs that match each of the

conditions

• Do an intersection (for conjunction) or a union (for

disjunction)

• Sort the records by block ID and fetch them in one shot

• Called “Index-ANDing” or “Index-ORing”

Heavily used in commercial systems

Conjunctive: select * from accounts where balance > 100000 and SIN = “123”
Disjunctive: select * from accounts where balance > 100000 or SIN = “123”

Selection algorithms: summary

• Full scan: scan and match

B(R)

• Sorted R: binary search + sequential scan

log2B(R) + B(R)/V(R,a)

• Clustered index on R: index search + sequential scan

HTi+B(R)/V(R,a)

• Unclustered index on R: index search + non-sequential retrieval

HTi+T(R)/V(R,a)

• Space requirements: M 1 block

Hard task to keep R sorted

Slice operations: Projection

S=attribute list(R)

Projection operator: bag or set?

π A,D (R)

SELECT DISTINCT A, D

FROM R

A D A D

7

3

10

R A B C D

x

x

y

y

x

y

x

y

1

5

12

23

7

7

3

10

x

x

y

y

7

7

3

10

x

y

y

SELECT A, D

FROM R

Bag projection –
in practice

Set projection –
in RA theory

Set projection algorithm I:
modified 2PMMS

• Sort using a1,a2… as a sorting key

• Phase 1: while reading a single partition, eliminate

unwanted attributes – more records per run, tuples are

smaller. After sorting in RAM and before writing to disk –

remove duplicates (adjacent)

• Phase II: while merging, transfer to output buffer only

unique tuples

Set projection I: diagram

R

Sorted
sublists
of R

Memory M
blocks

M buffers

Use to sort a
single sublist

Set projection I: cost

• In Phase I, read original relation (B), write out same number

of smaller (less columns, distinct) tuples (B). Total cost 2B.

• Merge phase: read all B blocks (at most) of sorted runs

(recall: cost of a final output is not included)

• The total cost of sorting-based projection: 3B(R) disk I/Os

Set projection I:
memory requirements
• Assuming M blocks of memory are available, we create

sorted runs of size ~M each

• For the second phase, we need 1 block for each run in main
memory to a maximum of ~M blocks

• Thus, B < M2, and the memory requirement is

M >= sqrt(B)

Projection algorithm II: hashing

Phase I: partitioning

• Partition tuples into buckets:

read R using one input buffer. For each tuple, discard
unwanted fields, apply hash function h1 to choose one of
M-1 output buffers

• When the i-th buffer is full, append its content to one of
M-1 on-disk buckets

• Result: M-1 buckets on disk (of tuples with no unwanted
fields). 2 tuples from different buckets guaranteed to be
distinct (different hash values)

Projection algorithm II: hashing

Phase II: duplicate elimination

• Read each bucket in turn and build an in-memory hash
table, using hash fn h2 (<> h1) on all fields, while
discarding duplicates.

If a set of distinct values from a single bucket does not fit in memory,
can apply hash-based projection algorithm recursively to this partition.
This may require additional disk I/Os

Projection II: diagram
Disk

(3,j)
(2,j)

(0,a)
(0,a)

(2,b)
(1,c)

R0

R2

h1(k) = k mod 3

R1

(0,a)
(0,a)

(3,j)

(1,c)

(2,j)
(2,b)

Memory:
M buffers

Memory to process a
single bucket

First block
holds 1 block
of R

Projection II: cost

• We read each block of R as we hash the tuples and we write
each block to a corresponding bucket for a total of 2B disk
I/Os

• We then read each block of each bucket again in a one-pass
algorithm which focuses on the current bucket: B

• The total number of disk I/Os is 3B(R)

Projection algorithm II: memory
requirements

• The cost of 3B(R) can be achieved as long as the individual

buckets are sufficiently small to fit in main memory

• Assuming that a good hash function will partition R into

equal-sized buckets, each bucket can be approximately

B/(M-1) in size (we have M-1 output buffers, each writes

into its own file)

• If B/(M-1) < M (fits into memory during individual

processing), then the algorithm works with 3B disk I/Os

• Thus, M >= sqrt (B)

Projection III: using indexes

• If an index contains all wanted attributes in its search key,
can do index-only scan. Then remove duplicates either by
sorting or by hashing.

• If an ordered (i.e., tree) index contains all wanted attributes
as prefix of a search key, can do even better:

• Retrieve data entries in order (index-only scan), discard
unwanted fields, compare adjacent tuples to check for
duplicates.

Projection algorithms: summary

• Projection involves duplicate elimination

• This is achieved using 3 main algorithmic techniques:

• Sorting

• Hashing

• Indexing

• Sort-based approach is the standard:

• better handling of skew

• the result is sorted.

Quick question

What implementation would have a smaller cost – implementation for bag

projection or set projection? Why?

A. Set projection. The number of records in a set is typically smaller

than a bag, and cost is a function of the number of records in the

collection.

B. Bag projection. A bag is easier to reason about formally, and

therefore allows more aggressive optimization opportunities.

C. Bag projection. Removing duplicates requires an extra step, which

can be expensive and is not always required by the application.

Quick question

What implementation would have a smaller cost – implementation for bag

projection or set projection? Why?

A. Set projection. The number of records in a set is typically smaller

than a bag, and cost is a function of the number of records in the

collection.

B. Bag projection. A bag is easier to reason about formally, and

therefore allows more aggressive optimization opportunities.

C. Bag projection. Removing duplicates requires an extra step, which

can be expensive and is not always required by the application.

Producing output:
pipelining vs materialization
• Materialization: store the results of each operator on disk

until they are needed by another operation

• Pipelining: interleave execution of multiple operators

• The tuples produced by one operator are immediately
consumed by another operator, without writing results
to disk

• For a complex query involving a chain of operators this
gives major savings in I/Os

• The operators communicate through the Iterator
interface On the other hand, multiple

operators share memory, and
there is a chance of thrashing

Iterators

• Operators are often implemented as Iterators, which allows
to a consumer of the results to get one resulting tuple at a
time

• An iterator has three main methods:

• Open: Initializes data structures. Doesn’t return tuples

• GetNext: Returns next tuple & adjusts the data
structures

• Close: Cleans up afterwards

• We assume these to be overloaded names of methods

Examples of Iterators
The following pseudocode is given to help you with A1.3

Iterator for table-scan of R
Open () {

b: = the first block of R

t: = the first tuple of b

}

GetNext () {

next: = NotFound

if (t is past the last tuple on block b) {

increment b to the next block;

if (there is no next block)

return NotFound

else

t: = the first tuple of b

}

next: = t

increment t to the next tuple of b

return next

}

Close () {}

Iterator for Selection I (takes as an
input GetNext() of table-scan
iterator)

Open () {

}

GetNext () {

t: = input.GetNext()

next: = NotFound

if (t != NotFound) {

if (t satisfies selection condition)

next: = t

}

return next

}

Close () {}

Iterator for Projection II (hashing)
Takes as an input table-scan or
selection GetNext()

Open () {

initialize M-1 buckets using M-1 empty output buffers

t: = input.GetNext()

while (t != NotFound)

strip unwanted attributes from t

if (output buffer h(t) has no room) {

append content of buffer h(t) to on-disk bucket h(t)

empty buffer h(t)

}

copy t to buffer h(t)

t: = input.GetNext()

}

for each buffer in output buffers

if (buffer is not empty)

append buffer to the corresponding on-disk bucket

…

Part I: partitioning R into M-1 buckets

Iterator for Projection II (contd.)
Open () {

…

initialize 1 input buffer to read R0

create empty hash table in the remaining M-1 pages

b: = the first block of R0

t: = the first tuple of b

}

Part II: setup first bucket

Note: All the preparatory work is done in Open,
so we can produce tuple-at-a-time when asked
for GetNext

Iterator for Projection II: GetNext
GetNext () {

next: = NotFound

if (t is past the last tuple on block b of Ri) {

increment b to the next block;

if (there is no next block) {

increment i to the next bucket i+1

if (there is no next bucket)

return NotFound

empty in-memory hash table

b: = first block of Ri

t: = the first tuple of b

}

try to insert t into in-memory hash table

while (collision and t is in hash table) {

t: = GetNext ()

if (t=NotFound)

return NotFound

}

next: = t

increment t to the next tuple of b

return next

Processes current tuple
of current bucket Ri

Tries current tuple for
duplicates

